
1-888-INTERSIL or 321-724-7143  |  Copyright © Intersil Corporation 1999

1

A Theoretical View of Coherent Sampling
Author: Paul Chen

Introduction

In recent years, the comprehensive science behind testing the
performance of A/D converters has been perfected. Commer-
cially available equipment used to test the performance of A/D
converters has been forced to keep up with the various perfor-
mance measures developed. Some of these parameters
include effective number of bits (ENOB), total harmonic distor-
tion (THD), and signal to noise ratio (SNR). A number of data
acquisition systems (DAS) have been to developed to test the
performance of these A/D converters.

One approach for measuring the parameters listed above is
to use frequency-based continuous wave tests on A/D
converters. Since these tests perform fast Fourier (FFT)
transforms [1] of the sample signal, one issue arises. The
continuous (sinusoidal) wave must be sampled coherently by
the DAS system in order to avoid FFT artifacts. This applica-
tion note was written to assist those trying to understand
coherent sampling mathematically. For a more general dis-
cussion on coherent sampling, refer to [2].

Definition of Coherent Sampling
In order to avoid FFT artifacts, the ratio between the fre-
quency of the input signal and the sampling frequency of the
system must be able to be expressed as a rational number.
Let us take the ideal sinusoid formed from N samples:

where n is defined as the sampling index 0 < n < N - 1.

f is equal to the digital frequency. The analog frequency, F, is
defined as F = FS f, where FS is the sampling frequency of
the system. The digital frequency is considered coherent if f
is a rational number; since there are only N samples in the
sinusoidal data set, f is the rational number

where k0 and N are integers.

where n is defined as the sampling index 0 < n < N - 1.

Mathematically, there is no reason why f is required to be
rational; N remains an integer, but k0 can range from all real
numbers. In the following section, we will derive the discrete
Fourier transform (DFT) of Equation 3 without requiring
Equation 2 to be rational.

Mathematical Reason Behind Coherent
Sampling

The DFT is defined as

k is the frequency sampling index. It is related to the analog
frequency by

Lets clear up a point of confusion; the FFT is an efficient
method of computing DFT if N, the number of samples, is a
power of 2. The DFT and FFT are only a tools used to iden-
tify the spectral purity of a periodic tone. Sinusoids certainly
have the simplest spectral results (with which we will derive
later); but other periodic signals, such as triangle waves and
square waves, also have distinct spectral response. These
transforms were invented by mathematicians at the turn of
the century as a simple extension of the unit circle/sine-
cosine relationship. As engineers, we apply the DFT and
FFTs to a wide variety of signals and have been trained to
identify a signal, perform signal-to-noise ratios, and evaluate
the quality of whole systems.

Notice that F is now a discretely sampled domain related to
the sampling frequency. k, also known as the frequency bin
can only go up to N-1, and thus the maximum frequency is
(N-1)FS/N.

Recall that one of the Euler’s identities is

Using Equations 3, 4, and 6, the following can be derived:

x(n) = sin(2πf n ) (EQ. 1)

f
k0
N
------

F
FS
------- ,= = (EQ. 2)

(EQ. 3)x n( ) 2π
N
-------k0n 

 sin=

X k( ) x n( )e
j2πk

n
N
----–

where 0 k N 1–≤ ≤
n 0=

N 1–

∑= (EQ. 4)

F
k
N
---- FS= (EQ. 5)

x( ) e
jx

e
jx–

–
2j

------------------------=sin (EQ. 6)

(EQ. 7)
X k( ) 1

2j
----- e

j2π
N
-------k0n

e
j2π
N
-------k0n–

–
 
 
 
 

e
j2πk n

N
----–

n 0=

N 1–

∑=

(EQ. 8)
X k( ) 1

2j
----- e

j
2π
N
------- k0 k–( )n

e
j
2π
N
------- k0 k+( )n–

–
 
 
 
 

.
n 0=

N 1–

∑=

No. AN9705 June 1997 Intersil Data Acquisition



2

Application Note 9705

The summation can be easily evaluated using the geometric series equation

Thus Equation 8 becomes

Take advantage of the fact that

Equation 10 can be written as

The resulting bracket terms can be reformed into sine wave using the synthesis of Equation 6. Thus Equation 12 can be
written as

for k = 0,1,...,N-1.

Now the importance of the digital frequency, f, being
rational becomes clear. If f is rational, then k0 is an integer,
and the numerators of both sin(x)/sin(x/N) functions are 0
for all frequency index k. Remember that the frequency
index, k, is also related to a discrete analog frequency bin
as shown in Equation 5. Now note that the denominator of
the first sin(x)/sin(x/N) function goes to sin(0) = 0 only when
k = k0. Thus the signal is indeterminate when k = k0. The
first sin(x)/sin(x/N) function at this indeterminate point is
equal to N using L’Hospital rule. A similar indeterminate
function occurs for the second sin(x)/sin(x/N) function when
k = N - k0. The denominator is equal to sin(π) = 0. Thus, if
k0 is an integer, then Equation 13 is

where δ(x) is a delta function defined by δ(x) = 0 for all x
except for x = 0; δ(0) = 1. Figure 1 shows a plot of
Equation 13; the second delta function is not identical to
Equation 14 due to the sinusoidal roll-over limitations of the
software. The pseudo-code used to generate this plot is
given in the Appendix.

We define coherent frequencies as when the digital fre-
quency of the sinusoid is rational and the FFT results in
perfect delta functions occurring at the frequency bin k0
and N - k0. Note that for logarithm magnitude display of
Equation 13, engineers often normalize the FFT and DFT
results by 1/N. The number of samples, N, is seen as a
computational gain. Note that the 2j term in the gain is a
phase component. The magnitude plots of Equation 13
show that the energy of the sinusoid is divided between the
two delta functions.
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FIGURE 1. PLOT OF THE FREQUENCY RESPONSE OF A
SINUSOID WHERE k0 = 16, N = 256
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Now let us examine sinusoids where k0 is not equal to an
integer, and the function is not coherent with respect to N
and FS. The numerator of both sin(x)/sin(x/N) functions in
Equation 13 can never go to 0 because k- k0 can never
equal 0 and k-N+ k0 can never equal N. In fact, the linear
domain has, for large N, a sinc function shifted about k0 and
N- k0 frequency bins. The dB plots of Equation 13 with a
non-integer k0 reveal spreading about these same frequency
bins. Figure 2 shows a 256 point sinusoid with a k0 = 15.25.
The pseudo-code used to generate this plot is given in the
Appendix.

Summary

For a data set of N, it was shown that the ratio of F/FS must
have an equivalent ratio k0/N that is a rational number. If this
condition is not met, smearing across the frequency bins
occurs. The DAS system is left with three options. First, it
can compensate for the frequency artifact caused by non-
coherent sampling using windowing. The compensation of
non-coherent sampling can only be marginal, however, if the
DAS system is limited in registers and computational capa-
bility. The second option is for the DAS system to fix the
sampling frequency of the system, compute a frequency of
the continuous wave that results in an equivalent ratio
F/FS = k0/N that is rational, and tune the input continuous
wave to the computed frequency. The third option is for the
DAS system to fix the continuous wave frequency, compute
a sampling frequency of the system that results in an equiva-
lent ratio F/FS = k0/N that is rational, and tune the sampling
frequency to the computed frequency. The latter two options
are practical approaches for most DAS systems.
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Appendix

Pseudo-code used to generate Figure 1 from Equation 13

k = 0:255;
k0 = 16;
A1 = sin(pi*(k0-k)); A2 = sin(pi*(k0+k));
B1 = sin(pi*(k0-k)/256); B2 = sin(pi*(k0+k)/256);
C1 = exp(j*pi*255/256*(k0-k));
C2 = exp(-j*pi*255/256*(k0+k));
for o = 1:256

if B1(o) ~= 0
X1(o) = 1/(2*j)*(A1(o)/B1(o)*C1(o) -
A2(o)/B2(o)*C2(o));

else
X1(o) = 256;

end
end
plot(20*log10(abs(X1/256)),'w')
axis([1 256 -60 0])
xlabel('frequency index = k')
ylabel('Magnitude (dB)')

Pseudo-code used to generate Figure 2 from Equation 13

k=0:255;
k0 = 15.25;
A1 = sin(pi*(k0-k)); A2 = sin(pi*(k0+k));
B1 = sin(pi*(k0-k)/256); B2 = sin(pi*(k0+k)/256);
C1 = exp(j*pi*255/256*(k0-k));
C2 = exp(-j*pi*255/256*(k0+k));
X1 = 1/(2*j)*(A1./B1.*C1 - A2./B2.*C2);
plot(k, 20*log10(abs(X1/256)),'w')
axis([0 255 -60 0])
xlabel('frequency index = k')
ylabel('Magnitude (dB)')
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FIGURE 2. PLOT OF THE FREQUENCY RESPONSE OF A
SINUSOID WHERE k0 = 15.25, N = 256
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